Symbol |
\(\LaTeX\) code |
\(\alpha B \gamma \Delta \epsilon \dots X \psi \Omega\) |
\alpha B \gamma \Delta \epsilon \dots X \psi \Omega |
\(< > \subset \subsetneq \subseteq \supset \in \notin\) |
< > \subset \subsetneq \subseteq \supset \in \notin |
\(A \approx \Omega\) |
A \approx \Omega |
\(X \sim B(n,p)\) |
X \sim B(n,p) |
\(\int_a^b\) |
\int_a^b |
\(\frac{dx}{dy}\) |
\frac{dx}{dy} |
\(\frac{\partial f}{\partial y}\) |
\frac{\partial f}{\partial y} |
\(\nabla f\) |
\nabla f |
\(\Delta f\) |
\Delta f |
\(\lim_{x\to\infty} f(x)\) |
\lim_{x\to\infty} f(x) |
\((\frac{1}{2}) \left(\frac{x}{y}\right)\) |
(\frac{1}{2}) \left(\frac{x}{y}\right) |
\(\sum_{i=1}^{\infty}x_{i} \prod_{i=1}^{n}y_{i}\) |
\sum_{i=1}^{\infty}x_{i} \prod_{i=1}^{n}y_{i} |
\(\binom{n}{k}\) |
\binom{n}{k} |
\((x+y)^2 = \underbrace{x^2 + 2xy + y^2}_{expand}\) |
(x+y)^2 = \underbrace{x^2 + 2xy + y^2}_{expand} |
\((x+y)^2 = \overbrace{x^2 + 2xy + y^2}^{expand}\) |
(x+y)^2 = \overbrace{x^2 + 2xy + y^2}^{expand} |
\(\begin{align} 1 + 2 &= 3\\1 &= 3 - 2 \end{align}\) |
\begin{align} 1 + 2 &= 3 \\ 1 &= 3 - 2 \end{align} |
\(\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}\) |
\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} |
\(\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}\) |
\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} |